Direct numerical simulation of transitional pulsatile stenotic flow using Lattice Boltzmann Method

نویسنده

  • Kartik Jain
چکیده

The present contribution reports direct numerical simulations of pulsatile flow through a 75% eccentric stenosis using the Lattice Boltzmann Method (LBM). The stenosis was previously studied by Varghese, Frankel, and Fischer 1 in a benchmark computation, and the goal of this work is to evaluate the LBM and the solver Musubi for transitional flows in anatomically realistic geometries. A part of the study compares the LBM simulation results against the benchmark and evaluates the efficacy of most basic LBM scheme for simulation of such flows. The novelty lies in the computation of Kolmogorov micro-scales by performing simulations that consist of up to ∼ 700× 10 cells. Recommendations on the choice of spatial and temporal resolutions for simulation of transitional flows in complex geometries naturally arise from the results. The LBM results show an excellent agreement with the previously published results thereby validating the method and the solver Musubi for the simulation of transitional flows. The study suggests that with a prudent calibration of the parameters, the LB method, due to its simplicity and compute efficiency has advantages for the simulation of such flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

متن کامل

Direct Numerical Simulations of Transitional Pulsatile Flows in Stenotic Vessels

Title of dissertation: DIRECT NUMERICAL SIMULATIONS OF TRANSITIONAL PULSATILE FLOWS IN STENOTIC VESSELS Nikolaos Beratlis Doctor of Philosophy, 2008 Dissertation directed by: Professor Elias Balaras Department of Mechanical Engineering In the present work a numerical study of transitional pulsatile flow through planar and cylindrical constrictions is presented. First, a simulation carefully coo...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Numerical Simulation of Fluid Flow over a Ceramic Nanoparticle in Drug Delivery System

In this work, for better understanding of drug delivery systems, blood flow over a ceramic nanoparticle is investigated through microvessels. Drug is considered as a nanoparticle coated with the rigid ceramic. Due to the low characteristic size in the microvessel, the fluid flow is not continuum and the no-slip boundary condition cannot be applied. To solve this problem lattice Boltzmann method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016